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Introduction

The Evolution of Scalable Microservices
In this report, I will discuss strategies and techniques for building
scalable and resilient microservices, working our way through the
evolution of a microservices-based system.

Beginning with a monolithic application, we will refactor it, briefly
land at the antipattern of single instance—not scalable or resilient—
microliths (micro monoliths), before quickly moving on, and step
by step work our way toward scalable and resilient microservices
(microsystems).

Along the way, we will look at techniques from reactive systems,
reactive programming, event-driven programming, events-first
domain-driven design, event sourcing, command query responsibil‐
ity segregation, and more.

v



1 It’s been debated whether Henry Ford actually said this. He probably didn’t. Regardless,
it’s a great quote.

We Can’t Make the Horse Faster
If I had asked people what they wanted, they would have said faster
horses.

—Henry Ford1

Today’s applications are deployed to everything from mobile devices
to cloud-based clusters running thousands of multicore processors.
Users have come to expect millisecond response times (latency) and
close to 100 percent uptime. And, by “user,” I mean both humans
and machines. Traditional architectures, tools, and products as such
simply won’t cut it anymore. We need new solutions that are as dif‐
ferent from monolithic systems as cars are from horses.

Figure P-1 sums up some of the changes that we have been through
over the past 10 to 15 years.

Figure P-1. Some fundamental changes over the past 10 to 15 years

To paraphrase Henry Ford’s classic quote: we can’t make the horse
faster anymore; we need cars for where we are going.

So, it’s time to wake up, time to retire the monolith, and to decom‐
pose the system into manageable, discrete services that can be scaled
individually, that can fail, be rolled out, and upgraded in isolation.

vi | Introduction



They have had many names over the years (DCOM, CORBA, EJBs,
WebServices, etc.). Today, we call them microservices. We, as an
industry, have gone full circle again. Fortunately, it is more of an
upward spiral as we are getting a little bit better at it every time
around.

We Need to Learn to Exploit Reality
Imagination is the only weapon in the war against reality.

—Lewis Carroll, Alice in Wonderland

We have been spoiled by the once-believed-almighty monolith—
with its single SQL database, in-process address space, and thread-
per-request model—for far too long. It’s a fairytale world in which
we could assume strong consistency, one single globally consistent
“now” where we could comfortably forget our university classes on
distributed systems.

Knock. Knock. Who’s There? Reality! We have been living in this
illusion, far from reality.

We will look at microservices, not as tools to scale the organization
and the development and release process (even though it’s one of the
main reasons for adopting microservices), but from an architecture
and design perspective, and put it in its true architectural context:
distributed systems.
One of the major benefits of microservices-based architecture is that
it gives us a set of tools to exploit reality, to create systems that
closely mimic how the world works.

Don’t Just Drink the Kool-Aid
Everyone is talking about microservices in hype-cycle speak; they
are reaching the peak of inflated expectations. It is very important to
not just drink the Kool-Aid blindly. In computer science, it’s all
about trade-offs, and microservices come with a cost. Microservices
can do wonders for the development speed, time-to-market, and
Continuous Delivery for a large organization, and it can provide a
great foundation for building elastic and resilient systems that can

Introduction | vii
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2 If approached from the perspective of distributed systems, which is the topic of this
report.

take full advantage of the cloud.2 That said, it also can introduce
unnecessary complexity and simply slow you down. In other words,
do not apply microservices blindly. Think for yourself.

viii | Introduction



CHAPTER 1

Essential Traits of an Individual
Microservice

In my previous book, Reactive Microservices Architecture, I discussed
the essential traits of a microservice: isolation, autonomicity, single
responsibility, exclusive state, and mobility. Let’s take a few minutes
to recap the essence of these traits.

Isolate All the Things
Without great solitude, no serious work is possible.

—Pablo Picasso

Isolation is the most important trait and the foundation for many of
the high-level benefits in microservices.

Isolation also has the biggest impact on your design and architec‐
ture. It will, and should, slice up the entire architecture, and there‐
fore it needs to be considered from day one.

It will even affect the way you break up and organize the teams and
their responsibilities, as Melvyn Conway discovered in 1967 (later
named Conway’s Law):

Any organization that designs a system (defined broadly) will pro‐
duce a design whose structure is a copy of the organization’s com‐
munication structure.

Isolation between services makes it natural to adopt Continuous
Delivery (CD). This makes it possible for you to safely deploy appli‐

1
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cations and roll out and revert changes incrementally, service by ser‐
vice.

Isolation makes it easier to scale each service, as well as allowing
them to be monitored, debugged, and tested independently—some‐
thing that is very difficult if the services are all tangled up in the big
bulky mess of a monolith.

Act Autonomously
In a network of autonomous systems, an agent is only concerned with
assertions about its own policy; no external agent can tell it what to do,
without its consent. This is the crucial difference between autonomy and
centralized management.

—Mark Burgess, Promise Theory

Isolation is a prerequisite for autonomy. Only when services are iso‐
lated can they be fully autonomous and make decisions independ‐
ently, act independently, and cooperate and coordinate with others
to solve problems.

Working with autonomous services opens up flexibility around ser‐
vice orchestration, workflow management, and collaborative behav‐
ior, as well as scalability, availability, and runtime management, at
the cost of putting more thought into well-defined and composable
APIs.

But autonomy cuts deeper, affecting more than the architecture and
design of the system. A design with autonomous services allows the
teams that build the services to stay autonomous relative to one
another—rolling out new services and new features in existing serv‐
ices independently, and so on.

Autonomy is the foundation on which we can scale both the system
and the development organization.

Single Responsibility
This is the Unix philosophy: Write programs that do one thing and do it
well. Write programs to work together.

—Doug McIlroy

2 | Chapter 1: Essential Traits of an Individual Microservice



1 The Unix philosophy is described really well in the classic book The Art of Unix Pro‐
gramming by Eric Steven Raymond (Pearson Education).

2 For an in-depth discussion on the Single Responsibility Principle, see Robert C. Mar‐
tin’s website The Principles of Object Oriented Design.

The Unix philosophy1 and design has been highly successful and still
stands strong decades after its inception. One of its core principles is
that developers should write programs that have a single purpose—a
small, well-defined responsibility, and compose it well so it works
well with other small programs.

This idea was later brought into the Object-Oriented Programming
community by Robert C. Martin and named the Single Responsibil‐
ity Principle2 (SRP), which states that a class or component should
“have only one reason to change.”
There has been a lot of discussion around the true size of a micro‐
service. What can be considered “micro”? How many lines of code
can it be and still be a microservice? These are the wrong questions.
Instead, “micro” should refer to scope of responsibility, and the
guiding principle here is the Unix philosophy of SRP: let it do one
thing, and do it well.

If a service has only one single reason to exist, providing a single
composable piece of functionality, business domains and responsi‐
bilities are not tangled. Each service can be made more generally
useful, and the system as a whole is easier to scale, make resilient,
understand, extend, and maintain.

Own Your State, Exclusively
Without privacy, there was no point in being an individual.

—Jonathan Franzen, The Corrections

Up to this point, we have characterized microservices as a set of iso‐
lated services, each one with a single area of responsibility. This
scheme forms the basis for being able to treat each service as a single
unit that lives and dies in isolation—a prerequisite for resilience—
and can be moved around in isolation—a prerequisite for elasticity
(in which a system can react to changes in the input rate by increas‐
ing or decreasing the resources allocated to service these inputs).

Own Your State, Exclusively | 3
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Although this all sounds good, we are forgetting the elephant in the
room: state.

Microservices are most often stateful components: they encapsulate
state and behavior. Additionally, isolation most certainly applies to
state and requires that you treat state and behavior as a single unit.

They need to own their state, exclusively.

This simple fact has huge implications. It means that data can be
strongly consistent only within each service but never between serv‐
ices, for which we need to rely on eventual consistency and abandon
transactional semantics. You must give up on the idea of a single
database for all your data, normalized data, and joins across services
(see Figure 1-1). This is a different world, one that requires a differ‐
ent way of thinking and the use of different designs and tools—
something that we will discuss in depth later on in this report.
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Figure 1-1. A monolith disguised as a set of microservices is still a
monolith
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Stay Mobile, but Addressable
To move, to breathe, to fly, to float, To gain all while you give, To roam
the roads of lands remote, To travel is to live.

—H. C. Andersen

With the advent of cloud computing, virtualization, and Docker
containers, we have a lot of power at our disposal to manage hard‐
ware resources efficiently. The problem is that none of these matter
if our microservices and their underlying platform cannot make
efficient use of them if they are statically locked into a specific topol‐
ogy or deployment scenario.

What we need are services that are mobile, allowing the system to be
elastic and adapt dynamically to its usage patterns. Mobility is the
possibility of moving services around at runtime while they are
being used. This is needed for the services to stay oblivious to how
the system is deployed and which topology it currently has—some‐
thing that can (and often should) change dynamically.

Now that we have outlined the five essential traits of an individual
microservice, we are ready to slay the monolith and put them to
practice.

6 | Chapter 1: Essential Traits of an Individual Microservice



CHAPTER 2

Slaying the Monolith

Only with absolute fearlessness can we slay the dragons of mediocrity
that invade our gardens.

—John Maynard Keynes

Before we take on the task of slaying the monolith, let’s try to under‐
stand why its architecture is problematic, why we need to “slay the
monolith” and move to a decoupled architecture using microservi‐
ces.

Suppose that we have a monolithic Java Platform, Enterprise Edition
(Java EE) application with a classic three-tier architecture that uses
Servlets, Enterprise Java Beans (EJBs) or Spring, and Java Persis‐
tence API (JPA), and an Oracle SQL database. Figure 2-1 depicts
this application.
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Figure 2-1. A monolithic application with a classic three-tier architec‐
ture

The problem with this design is that it introduces strong coupling
between the components within each service and between services.
Workflow logic based on deep nested call chains of synchronous
method calls, following the thread of the request, leads to strong
coupling and entanglement of the services, making it difficult to
understand the system at large and to let services evolve independ‐
ently. The caller is held hostage until the methods have executed all
their logic.

Because all these services are tightly coupled, you need to upgrade
all of them at once. Their strong coupling also makes it difficult to
deal with failure in isolation. Exceptions—possibly blowing the
entire call stack—paired with try/catch statements is a blunt tool for
failure management. If one service fails, it can easily lead to cascad‐
ing failures across all of the tiers, eventually taking down the entire
application.

The lack of isolation between services also means that you can’t scale
each service individually. Even if you need to scale only one single
service (due to high traffic or similar), you can’t do that. Instead you
must scale the whole monolith, including all of its other services. In
the world of the monolith, it’s always all or nothing, leading to lack
of flexibility and inefficient use of resources.

8 | Chapter 2: Slaying the Monolith



Application servers (such as WebLogic, JBoss, Tomcat, etc.) encour‐
age this monolithic model. They assume that you are bundling your
service JARs into an EAR (or WAR) file as a way of grouping your
services, which you then deploy—alongside all your other applica‐
tions and services—into the single running instance of the applica‐
tion server. The application server then manages the service
“isolation” through class loader magic. This is a fragile model, leav‐
ing services competing for resources like CPU time, main memory,
and storage space, resulting in reduced fairness and stability as a
result.

Don’t Build Microliths
microlith (\Đmī-krə-Ĕlith\):

—A very small stone tool made from a sharp blade-shaped piece
of stone.

Suppose that we want to move away from the application server and
the strongly coupled design and refactor this monolith into a
microservices-based system. By just drinking the Kool-Aid, relying
on a scaffolding tool, and following the path of least resistance,
many people end up with an architecture similar to that shown in
Figure 2-2.

Figure 2-2. A system of microliths communicating over synchronous
protocols

Don’t Build Microliths | 9



1 Nothing in the idea of REST itself requires synchronous communication, but it is
almost exclusively used this way in the industry.

In this architecture, we have single instance services communicating
over synchronous HTTP (often using RESTful1 APIs), running in
Docker containers, and using Create, Read, Update, and Delete
(CRUD) through JPA talking to a—hopefully dedicated—SQL data‐
base (in the worst case, still using a single monolithic database, with
a single, and highly normalized, schema for all services).

Well, what we have built ourselves is a set of micro monoliths—let’s
call them microliths.
A microlith is defined as a single-instance service in which synchro‐
nous method calls have been turned into synchronous REST calls
and blocking database access remains blocking. This creates an
architecture that is maintaining the strong coupling we wanted to
move away from but with higher latency added by interprocess
communication (IPC).

The problem with a single instance is that by definition it cannot be
scalable or available. A single monolithic thing, whatever it might be
(a human, or a software process), can’t be scaled out and can’t stay
available if it fails or dies.

Some people might think, “Well, Docker will solve that for me.” I’m
sorry to say, but containers alone won’t solve this problem. Merely
putting your microservice instances in Docker or Linux (LXC) con‐
tainers won’t help you as much as you would like.

There’s no question that containers and their orchestration manag‐
ers, like Kubernetes or Docker Swarm, are great tools for managing
and orchestrating hundreds of instances (with some level of isola‐
tion). But, when the dust settles, they have left you with the hard
parts of distributed systems. Because microservices are not isolated
islands and come in systems, the hardest parts are the space in-
between the services, in things like communication, consensus, con‐
sistency, and coordination to state and resources. These are
concerns that are a part of the application itself, not something that
can be bolted on after the fact.
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1 Carl Hewitt invented the Actor Model in 1973.

CHAPTER 3

Microservices Come in Systems

One actor is no actor. Actors come in systems.
—Carl Hewitt

In the spirit of famed computer scientist Carl Hewitt:1 one microser‐
vice is no microservice. Microservices come in systems.

Like humans, microservices are autonomous and therefore need to
communicate and collaborate with others to solve problems. And as
with humans, it is in the collaboration with others that the most
interesting opportunities and challenging problems arise.

What’s difficult in microservices design is not creating the individ‐
ual services themselves, but managing the space between the serv‐
ices. We need to dig deeper into the study of systems of services.

Embrace Uncertainty
What is not surrounded by uncertainty cannot be the truth.

—Richard Feynman

As soon as we exit the boundary of the single-service instance, we
enter a wild ocean of nondeterminism—the world of distributed sys‐
tems—in which systems fail in the most spectacular and intricate
ways; where information becomes lost, reordered, and garbled; and
where failure detection is a guessing game.

11
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2 It is—if you have not experienced this first-hand, I suggest that you spend some time
thinking through the implications of L Peter Deutsch’s Fallacies of Distributed Com‐
puting.

3 That fact that information has latency and that the speed of light represents a hard (and
sometimes very frustrating) nonnegotiable limit on its maximum velocity is an obvious
fact for anyone that is building internet systems, or who has been on a VOIP call across
the Atlantic ocean.

4 Peter Bailis has a good explanation of the different flavors of strong consistency.
5 A good discussion on different client-side semantics of eventual consistency—includ‐

ing read-your-writes consistency and causal consistency—can be found in “Eventually
Consistent—Revisited” by Werner Vogels.

6 Justin Sheehy’s “There Is No Now” is a great read on the topic.

It sounds like a scary world.2 But it is also the world that gives us
solutions for resilience, elasticity, and isolation, among others. What
we need is better tools to not just survive, but to thrive in the barren
land of distributed systems.

We Are Always Looking into the Past
The contents of a message are always from the past! They are never
“now.”

—Pat Helland

When it comes to distributed systems, one constraint is that commu‐
nication has latency.3 It’s a fact (quantum entanglement, wormholes,
and other exotic phenomena aside) that information cannot travel
faster than the speed of light, and most often travels considerably
slower, which means that communication of information has
latency.

In this case, exploiting reality means coming to terms with the fact
that information is always from the past, and always represents
another present, another view of the world (you are, for example,
always seeing the sun as it was 8 minutes and 20 seconds ago).
“Now” is in the eye of the beholder, and in a way, we are always
looking into the past.

It’s important to remember that reality is not strongly consistent,4 but
eventually consistent.5 Everything is relative and there is no single
“now.”6 Still, we are trying so hard to maintain the illusion of a single
globally consistent present, a single global “now.” This is no reason
to be surprised. We humans are bad at thinking concurrently, and
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assuming full control over time, state, and causality makes it easier
to understand complex behavior.

The Cost of Maintaining the Illusion of a
Single Now

In a distributed system, you can know where the work is done or you
can know when the work is done but you can’t know both.

—Pat Helland

The cost of maintaining the illusion of a single global “now” is very
high and can be defined in terms of contention—waiting for shared
resources to become available—and coherency—the delay for data to
become consistent.

Gene Amdahl’s, now classic, Amdahl’s Law explains the effect that
contention has on a parallel system and shows that it puts a ceiling
on scalability, yielding diminishing returns as more resources are
added to the system.

However, it turns out that this is not the full picture. Neil Günter’s
Universal Scalability Law shows that when you add coherency to the
picture, you can end up with negative results. And, adding more
resources to the system makes things worse.

In addition, as latency becomes higher (as it does with distance), the
illusion cracks. The difference between the local present and the
remote past is even greater in a distributed system.

Learn to Enjoy the Silence
Words are very unnecessary. They can only do harm. Enjoy the silence.

—Martin Gore, Enjoy the Silence

Strong consistency requires coordination, which is very expensive in
a distributed system and puts an upper bound on scalability, availa‐
bility, low latency, and throughput. The need for coordination
means that services can’t make progress individually, because they
must wait for consensus.

The cure is that we need to learn to enjoy the silence. When design‐
ing microservices, we should strive to minimize the service-to-
service communication and coordination of state. We need to learn
to shut up.

The Cost of Maintaining the Illusion of a Single Now | 13
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7 Another excellent paper by Pat Helland, in which he introduced the idea of ACID 2.0,
in “Building on Quicksand.”

8 That causal consistency is the strongest consistency that we can achieve in an always
available system was proved by Mahajan et al. in their influential paper “Consistency,
Availability, and Convergence”.

Avoid Needless Consistency
The first principle of successful scalability is to batter the consistency
mechanisms down to a minimum.

—James Hamilton

To model reality, we need to rely on Eventual Consistency. But don’t
be surprised: it’s how the world works. Again, we should not fight
reality; we should embrace it! It makes life easier.

The term ACID 2.0 was coined7 by Pat Helland and is a summary of
a set of principles for eventually consistent protocol design. The
acronym is meant to somewhat challenge the traditional ACID from
database systems:

• The “A” in the acronym stands for Associative, which means that
grouping of messages does not matter and allows for batching.

• The “C” is for Commutative, which means that ordering of mes‐
sages does not matter.

• The “I” stands for Idempotent, which means that duplication of
messages does not matter.

• The “D” could stand for Distributed, but is probably included
just to make the ACID acronym work.

There has been a lot of buzz about eventual consistency, and for
good reason. It allows us to raise the ceiling on what can be done in
terms of scalability, availability, and reduced coupling.

However, relying on eventual consistency is sometimes not permis‐
sible, because it can force us to give up too much of the high-level
business semantics. If this is the case, using causal consistency can be
a good trade-off. Semantics based on causality is what humans
expect and find intuitive. The good news is that causal consistency
can be made both scalable and available (and is even proven8 to be
the best we can do in an always available system).
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9 For good discussions on vector clocks, see the articles “Why Vector Clocks Are Easy”
and “Why Vector Clocks Are Hard”.

10 For more information, see Mark Shapiro’s paper “A comprehensive study of Convergent
and Commutative Replicated Data Types”.

11 For a great production-grade library for CRDTs, see Akka Distributed Data.

Causal consistency is usually implemented using logical time instead
of synchronized clocks. The use of wall-clock time (timestamps) for
state coordination is something that should most often be avoided
in distributed system design due to the problems of coordinating
clocks across nodes, clock skew, and so on. This is the reason why it
is often better to rely on logical time, which gives you a stable notion
of time that you can trust, even if nodes fail, messages drop, and so
forth. There are several good options available, such as vector clocks,9

or Conflict-Free Replicated Data Types (CRDTs).10

CRDTs is one of the most interesting ideas coming out of dis‐
tributed systems research in recent years, giving us rich, eventually
consistent, and composable data-structures—such as counters,
maps, and sets—that are guaranteed to converge consistently
without the need for explicit coordination. CRDTs don’t fit all use
cases, but is a very valuable tool11 when building scalable and avail‐
able systems of microservices.

Let’s now look at three powerful tools for moving beyond microliths
that can help you to manage the complexity of distributed systems
while taking advantage of its opportunities for scalability and resil‐
ience:

• Events-First Domain-Driven Design
• Reactive Programming and Reactive Systems
• Event-Based Persistence

Avoid Needless Consistency | 15
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CHAPTER 4

Events-First Domain-Driven
Design

The term Events-First Domain-Driven Design was coined by Russ
Miles, and is the name for set of design principles that has emerged
in our industry over the last few years and has proven to be very
useful in building distributed systems at scale. These principles help
us to shift the focus from the nouns (the domain objects) to the
verbs (the events) in the domain. A shift of focus gives us a greater
starting point for understanding the essence of the domain from a
data flow and communications perspective, and puts us on the path
toward a scalable event-driven design.

Focus on What Happens: The Events
Here you go, Larry. You see what happens? You see what happens,
Larry?!

—Walter Sobchak, Big Lebowski

Object-Oriented Programming (OOP) and later Domain-Driven
Design (DDD) taught us that we should begin our design sessions
focusing on the things—the nouns—in the domain, as a way of find‐
ing the Domain Objects, and then work from there. It turns out that
this approach has a major flaw: it forces us to focus on structure too
early.

Instead, we should turn our attention to the things that happen—the
flow of events—in our domain. This forces us to understand how
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1 For an in-depth discussion on how to design and use bounded contexts, read Vaughn
Vernon’s book Implementing Domain-Driven Design (Addison-Wesley).

change propagates in the system—things like communication pat‐
terns, workflow, figuring out who is talking to whom, who is
responsible for what data, and so on. We need to model the business
domain from a data dependency and communication perspective.

As Greg Young, who coined Command Query Responsibility Segre‐
gation (CQRS), says:

When you start modeling events, it forces you to think about the behav‐
ior of the system, as opposed to thinking about structure inside the sys‐
tem.
Modeling events forces you to have a temporal focus on what’s going on
in the system. Time becomes a crucial factor of the system.

Modeling events and their causal relationships helps us to get a good
grip on time itself, something that is extremely valuable when
designing distributed systems.

Events Represent Facts
To condense fact from the vapor of nuance.

—Neal Stephenson, Snow Crash

Events represent facts about the domain and should be part of the
Ubiquitous Language of the domain. They should be modelled as
Domain Events and help us define the Bounded Contexts,1 forming
the boundaries for our service.

As Figure 4-1 illustrates, a bounded context is like a bulkhead: it
prevents unnecessary complexity from leaking outside the contex‐
tual boundary, while allowing you to use a single and coherent
domain model and domain language within.
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Figure 4-1. Let the bounded context define the service boundary

Commands represent an intent to perform some sort of action. These
actions are often side-effecting, meaning they are meant to cause an
effect on the receiving side, causing it to change its internal state,
start processing a task, or send more commands.

A fact represents something that has happened in the past. It’s
defined by Merriam-Webster as follows:

Something that truly exists or happens: something that has actual
existence, a true piece of information.

Facts are immutable. They can’t be changed or be retracted. We can’t
change the past, even if we sometimes wish that we could.

Knowledge is cumulative. This occurs either by receiving new facts,
or by deriving new facts from existing facts. Invalidation of existing
knowledge is done by adding new facts to the system that refute
existing facts. Facts are not deleted, only made irrelevant for current
knowledge.

Elementary, My Dear Watson
Just like Sherlock Holmes used to ask his assistant—Dr. Watson—
when arriving to a new crime scene, ask yourself: “What are the
facts?” Mine the facts.
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2 An in-depth discussion on event storming is beyond the scope for this book, but a good
starting point is Alberto Brandolini’s upcoming book Event Storming.

Try to understand which facts are causally related and which are
not. It’s the path toward understanding the domain, and later the
system itself.

A centralized approach to model causality of facts is event logging
(discussed in detail shortly), whereas a decentralized approach is to
rely on vector clocks or CRDTs.

Using Event Storming
When you come out of the storm, you won’t be the same person who
walked in.

—Haruki Murakami, Kafka on the Shore

A technique called event storming2 can help us to mine the facts,
understand how data flows, and its dependencies, all by distilling
the essence of the domain through events and commands.

It’s a design process in which you bring all of the stakeholders—the
domain experts and the programmers—into a single room, where
they brainstorm using Post-it notes, trying to find the domain lan‐
guage for the events and commands, exploring how they are causally
related and the reactions they cause.

The process works something like this:

1. Explore the domain from the perspective of what happens in
the system. This will help you find the events and understand
how they are causally related.

2. Explore what triggers the events. They are often created as a
consequence of executing the intent to perform a function, rep‐
resented as a command. Here, among other attributes, we find
user interactions, requests from other services, and external sys‐
tems.

3. Explore where the commands end up. They are usually received
by an aggregate (discussed below) that can choose to execute
the side-effect and, if so, create an event representing the new
fact introduced in the system.
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3 Pat Helland’s paper, “Data on the Outside versus Data on the Inside”, talks about guide‐
lines for designing consistency boundaries. It is essential reading for anyone building
microservices-based systems.

Now we have solid process for distilling the domain, finding the
commands and events, and understanding how data flows through
the system. Let’s now turn our attention to the aggregate, where the
events end up—our source of truth.

Think in Terms of Consistency Boundaries
One of the biggest challenges in the transition to Service-Oriented Archi‐
tectures is getting programmers to understand they have no choice but
to understand both the “then” of data that has arrived from partner
services, via the outside, and the “now” inside of the service itself.

—Pat Helland

I’ve found it useful to think and design in terms of consistency
boundaries3 for the services:

1. Resist the urge to begin with thinking about the behavior of a
service.

2. Begin with the data—the facts—and think about how it is cou‐
pled and what dependencies it has.

3. Identify and model the integrity constraints and what needs to
be guaranteed, from a domain- and business-specific view.
Interviewing domain experts and stakeholders is essential in
this process.

4. Begin with zero guarantees, for the smallest dataset possible.
Then, add in the weakest level of guarantee that solves your
problem while trying to keep the size of the dataset to a mini‐
mum.

5. Let the Single Responsibility Principle (discussed in “Single
Responsibility” on page 2) be a guiding principle.

The goal is to try to minimize the dataset that needs to be strongly
consistent. After you have defined the essential dataset for the ser‐
vice, then address the behavior and the protocols for exposing data
through interacting with other services and systems—defining our
unit of consistency.
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4 For a good discussion on how to design with aggregates, see Vaughn Vernon’s “Effective
Aggregate Design”.

5 You can find a good summary of the design principles for almost-infinite scalability
here.

Aggregates—Units of Consistency
Consistency is the true foundation of trust.

—Roy T. Bennett

The consistency boundary defines not only a unit of consistency, but
a unit of failure. A unit that always fails atomically is upgraded atom‐
ically and relocated atomically.

If you are migrating from an existing monolith with a single data‐
base schema, you need to be prepared to apply denormalization tech‐
niques and break it up into multiple schemas.

Each unit of consistency should be designed as an aggregate.4 An
aggregate consists of one or many entities, with one of them serving
as the aggregate root. The only way to reference the aggregate is
through the aggregate root, which maintains the integrity and con‐
sistency of the aggregate as a whole.

It’s important to always reference other aggregates by identity, using
their primary key, and never through direct references to the
instance itself. This maintains isolation and helps to minimize mem‐
ory consumption by avoiding eager loading—allowing aggregates to
be rehydrated on demand, as needed. Further, it allows for location
transparency, something that we discuss in detail momentarily.

Aggregates that don’t reference one another directly can be reparti‐
tioned and moved around in the cluster for almost infinite scalability
—as outlined by Pat Helland in his influential paper “Life Beyond
Distributed Transactions”.5

Outside the aggregate’s consistency boundary, we have no choice but
to rely on eventual consistency. In his book Implementing Domain-
Driven Design (Addison-Wesley), Vaughn Vernon suggests a rule of
thumb in how to think about responsibility with respect to data con‐
sistency. You should ask yourself the question: “Whose job is it to
ensure data consistency?” If the answer is that it’s the service execut‐
ing the business logic, confirm that it can be done within a single
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aggregate, to ensure strong consistency. If it is someone else’s (user’s,
service’s or system’s) responsibility, make it eventually consistent.

Suppose that we need to understand how an order management sys‐
tem works. After a successful event storming session, we might end
up with the following (drastically simplified) design:

• Commands: CreateOrder, SubmitPayment, ReserveProducts,
ShipProducts

• Events: OrderCreated, ProductsReserved, PaymentApproved,
PaymentDeclined, ProductsShipped

• Aggregates: Orders, Payments, Inventory

Figure 4-2 presents the flow of commands between a client and the
services/aggregates (an open arrow indicates that the command or
event was sent asynchronously).

Figure 4-2. The flow of commands in the order management sample
use case

If we add the events to the picture, it looks something like the flow
of commands shown in Figure 4-3.

Think in Terms of Consistency Boundaries | 23



Figure 4-3. The flow of commands and events in the order manage‐
ment sample use case

Please note that this is only the conceptual flow of the events, how
they flow between the services. An actual implementation will use
subscriptions on the aggregate’s event stream to coordinate work‐
flow between multiple services (something we will discuss in depth
later on in this report).

Contain Mutable State—Publish Facts
The assignment statement is the von Neumann bottleneck of program‐
ming languages and keeps us thinking in word-at-a-time terms in much
the same way the computer’s bottleneck does.

—John Backus (Turing Award lecture, 1977)

After this lengthy discussion about events and immutable facts you
might be wondering if mutable state deserves a place at the table at
all.

It’s a fact that mutable state, often in the form of variables, can be
problematic. One problem is that the assignment statement—as dis‐
cussed by John Backus in his Turing Award lecture—is a destructive
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6 For example, session state, credentials for authentication, cached data, and so on.

operation, overwriting whatever data that was there before, and
therefore resetting time, and resetting all history, over and over
again.

The essence of the problem is that—as Rich Hickey, the inventor of
the Clojure programming language, has discussed frequently—most
object-oriented computer languages (like Java, C++, and C#) treat
the concepts of value and identity as the same thing. This means that
an identity can’t be allowed to evolve without changing the value it
currently represents.

Functional languages (such as Scala, Haskell, and OCaml), which
rely on pure functions working with immutable data (values),
address these problems and give us a solid foundation for reasoning
about programs, a model in which we can rely on stable values that
can’t change while we are observing them.

So, is all mutable state evil? I don’t think so. It’s a convenience that
has its place. But it needs to be contained, meaning mutable states
should be used only for local computations, within the safe haven
that the service instance represents, completely unobservable by the
rest of the world. When you are done with the local processing and
are ready to tell the world about your results, you then create an
immutable fact representing the result and publish it to the world.

In this model, others can rely on stable values for their reasoning,
whereas you can still benefit from the advantages of mutability (sim‐
plicity, algorithmic efficiency, etc.).

Manage Protocol Evolution
Be conservative in what you do, be liberal in what you accept from
others.

—Jon Postel

Individual microservices are only independent and decoupled if
they can evolve independently. This requires protocols to be resilient
to and permissive of change—including events and commands, per‐
sistently stored data, as well as the exchange of ephemeral informa‐
tion.6 The interoperability of different versions is crucial to enable
the long-term management of complex service landscapes.
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7 Originally stated by Jon Postel in “RFC 761” on TCP in 1980.
8 It has, among other things, influenced the Tolerant Reader Pattern.
9 For an in-depth discussion about the art of event versioning, I recommend Greg

Young’s book Versioning in an Event Sourced System.
10 There is a semantic difference between a service that is truly new, compared to a new

version of an existing service.

Postel’s Law,7 also known as the Robustness Principle, states that you
should “be conservative in what you do, be liberal in what you accept
from others,” and is a good guiding principle in API design and evo‐
lution for collaborative services.8

Challenges include versioning of the protocol and data—the events
and commands—and how to handle upgrades and downgrades of
the protocol and data. This is a nontrivial problem that includes the
following:

• Picking extensible codecs for serialization
• Verifying that incoming commands are valid
• Maintaining a protocol and data translation layer that might

need to upgrade or downgrade events or commands to the cur‐
rent version9

• Sometimes even versioning the service itself10

These functions are best performed by an Anti-Corruption Layer,
and can be added to the service itself or done in an API Gateway.
The Anti-Corruption Layer can help make the bounded context
robust in the face of changes made to another bounded context,
while allowing them and their protocols to evolve independently.
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CHAPTER 5

Toward Reactive Microsystems

Ever since I helped coauthor the Reactive Manifesto in 2013, Reac‐
tive has gone from being a virtually unknown technique for con‐
structing systems—used by only fringe projects within a select few
corporations—to become part of the overall platform strategy in
numerous big players in the industry. During this time, Reactive has
become an overloaded word, meaning different things to different
people. More specifically there has been some confusion around the
difference between “Reactive Programming” and “Reactive Systems”
(a topic covered in depth in this O’Reilly article, “Reactive program‐
ming vs. Reactive systems”).

Reactive Programming is a great technique for making individual
components performant and efficient through asynchronous and
nonblocking execution, most often together with a mechanism for
backpressure. It has a local focus and is event-driven—publishing
facts to 0–N anonymous subscribers. Popular libraries for Reactive
Programming on the Java Virtual Machine (JVM) include Akka
Streams, Reactor, Vert.x, and RxJava.

Reactive Systems takes a holistic view on system design, focusing on
keeping distributed systems responsive by making them resilient and
elastic. It is message-driven—based upon asynchronous message-
passing, which makes distributed communication to addressable
recipients first class—allowing for elasticity, location transparency,
isolation, supervision, and self-healing.

Both are equally important to understand how, and when, to apply
when designing microservices-based systems. Let’s now dive into
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1 Like Gene Amdahl, who coined Amdahl’s Law, has shown us.

both techniques to see how we can use them on different levels
throughout our design.

Embrace Reactive Programming
Reactive Programming is essential to the design of microservices,
allowing us to build highly efficient, responsive, and stable services.
Techniques for Reactive Programming that we will discuss in depth
include asynchronous execution and I/O, back-pressured streaming,
and circuit breakers.

Go Asynchronous
Asynchronous and nonblocking I/O is about not blocking threads
of execution—a process should not hold a thread hostage, hogging
resources that it does not use. It can help eliminate the biggest threat
to scalability: contention.1

Asynchronous and nonblocking execution and I/O is often more
cost-efficient through more efficient use of resources. It helps mini‐
mize contention (congestion) on shared resources in the system,
which is one of the biggest hurdles to scalability, low latency, and
high throughput.

As an example, let’s take a service that needs to make 10 requests to
10 other services and compose their responses. Suppose that each
request takes 100 milliseconds. If it needs to execute these in a syn‐
chronous sequential fashion, the total processing time will be
roughly 1 second, as demonstrated in Figure 5-1.

28 | Chapter 5: Toward Reactive Microsystems



Figure 5-1. Sequential execution of tasks with each request taking 100
milliseconds

Whereas, if it is able to execute them all asynchronously, the total
processing time will just be 100 milliseconds, as shown in
Figure 5-2.

Figure 5-2. Parallel execution of tasks—an order of magnitude differ‐
ence for the client that made the initial request

But why is blocking so bad?

If a service makes a blocking call to another service—waiting for the
result to be returned—it holds the underlying thread hostage. This
means no useful work can be done by the thread during this period.
Threads are a scarce resource and need to be used as efficiently as
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2 With more threads comes more context switching, which is very costly. For more infor‐
mation on this, go to the “How long does it take to make a context switch?” blog post
on Tsuna’s blog.

possible.2 If the service instead performs the call in an asynchronous
and nonblocking fashion, it frees up the underlying thread so that
someone else can use it while the first service waits for the result to
be returned. This leads to much more efficient usage in terms of
cost, energy, and performance of the underlying resources, as
Figure 5-3 depicts.

Figure 5-3. The difference between blocking and nonblocking execution

It is also worth pointing out that embracing asynchronicity is as
important when communicating with different resources within a
service boundary as it is between services. To reap the full benefits

30 | Chapter 5: Toward Reactive Microsystems

http://bit.ly/2vjsWL9


of nonblocking execution, all parts in a request chain need to partic‐
ipate—from the request dispatch, through the service implementa‐
tion, down to the database, and back.

Reconsider the Use of Synchronous HTTP
It is unfortunate that synchronous HTTP (most often using REST)
is widely considered as the “state of the art” microservice communi‐
cation protocol. Its synchronous nature introduces strong coupling
between the services making it a very bad default protocol for inter‐
service communication. Asynchronous messaging makes a much
better default for communication between microservices (or any set
of distributed components, for that matter).

If you need to use REST over HTTP, which could be a good option
in certain cases, always use it outside the regular communication
flow so as not to block the regular request-response cycle.

Always Apply Backpressure
Alongside going asynchronous, you should always apply backpres‐
sure. Backpressure is all about flow control, ensuring that a fast pro‐
ducer should not be able to overwhelm a slower consumer by being
allowed to send it more data than it can handle, as shown in
Figure 5-4.

Figure 5-4. Backpressure includes having a backchannel where the con‐
sumer can manage control flow by communicating with the producer

Backpressure increases the reliability of not just the individual com‐
ponents, but also the data pipeline and system as a whole. It is usu‐
ally achieved by having a backchannel going upstream in which
downstream components can signal hints declaring whether the rate
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3 Started by Lightbend in 2014, which has, together with Netflix, Pivotal, Oracle, and
Twitter, created a standard for backpressure on the JVM, now staged for inclusion in
Java 9 as the Flow API.

of events should be slowed down or sped up. It is paramount that all
of the parties in the workflow/data pipeline participate and speak
the same protocol, which was the reason for the attempt to stand‐
ardize a protocol for backpressure in the Reactive Streams specifica‐
tion.3

At Someone Else’s Mercy
An escalator can never break: it can only become stairs. You should
never see an “Escalator Temporarily Out of Order” sign, just “Escalator
Temporarily Stairs. Sorry for the convenience.”

—Mitch Hedberg

We can’t bend the world to our will, so sometimes we find ourselves
at the mercy of another system, such that, if it crashes or overload us
with requests—and won’t participate in backpressure protocols—it
will take us down with it.

The problem is that not all third-party services, external systems,
infrastructure tools, or databases will always play along and expose
asynchronous and nonblocking APIs or protocols. This can put us
in a dangerous situation in which we are forced to use blocking pro‐
tocols or run the risk of being overloaded with more data than we
can handle. If this happens, we need to protect ourselves, and a great
way of doing that is to wrap the dangerous call in a “circuit breaker”
in order to manage potential failures or usage spikes gracefully.

A circuit breaker is a finite-state machine (FSM), which means that
it has a finite set of states: Closed, Open, and Half-Open. The default
state is Closed, which allows all requests to go through.

When a failure (or a specific number of failures) have been detected,
the circuit breaker “trips” and moves to an Open state. In this state,
it does not let any requests through, and instead fails fast to shield
the component from the failed service. Some implementations allow
you to register a fallback implementation to be used when in the
Open state to allow for graceful degradation.

After a timeout has occurred, there is a likelihood that the service is
back up again, so it attempts to “reset” itself and move to a Half-
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Open state. Now, if the next request fails, it moves back to Open, and
resets the timeout. But, if it succeeds, things are back in business,
and it moves to the Closed state, as demonstrated in Figure 5-5.

Figure 5-5. Circuit breakers can help improve the resilience of the ser‐
vice

Circuit breakers exist in most microservices frameworks and plat‐
forms; for example, in Akka, Lagom, and Hystrix.

Embrace Reactive Programming | 33

http://bit.ly/2veGa9E
http://bit.ly/2vecjxT
https://github.com/Netflix/Hystrix


4 For an example of an asynchronous JDBC wrapper, see Peter Lawrey’s post, “A JDBC
Gateway Microservice”.

5 Most NoSQL databases have asynchronous drivers. In the SQL world, you can turn to
Postgres or MySQL.

Toward Reactive Microliths
Let’s go back to our microliths to see if we can improve the design—
making the services more efficient, performant, and stable—by
applying the techniques of Reactive Programming.

The first thing we can do is to begin at the at the edge of the service
and replace the synchronous and blocking communication protocol
over REST with asynchronous alternatives.

One good alternative is to move to an event-driven model using
Pub/Sub messaging over a message broker such as Apache Kafka or
Amazon Web Services (AWS) Kinesis. This helps to decouple the
services by introducing temporal decoupling—the services commu‐
nicating do not need to be available at the same time—which increa‐
ses resilience and makes it possible to scale them independently.

The world is going streaming, and whereas data used to be at rest,
residing offline in SQL databases and queried on demand, nowadays
we operate on data in motion. Applications today need to react to
changes in data as it arrives, rather than batching it and delaying
consumption until the batch is full. They need to perform continu‐
ous queries or aggregations of inbound data and feed it back into the
application to affect the way it is operating. Microservices need to
embrace streaming as a fundamental trait in order to be able to
stream data between services, between user and application, and
participate—as endpoints—in fast data/streaming pipelines.

Another problem with the microlith is the synchronous, and block‐
ing, database access layer. A chain is not stronger than its weakest
link, and blocking every request on the database communication
introduces a potential Single Point Of Failure (SPOF) and Bottle‐
neck—making the service vulnerable to failures and decreasing its
scalability and efficiency due to the increased contention. We can
address this by applying Reactive Programming techniques to the
database access layer by wrapping it in a custom written asynchro‐
nous code4 or, better, by relying on an asynchronous and nonblock‐
ing database driver.5
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Let’s now apply Reactive Programming to our microliths (see
Figure 5-6) by adding support for messaging and streaming, relying
on asynchronous and nonblocking database access, and including
circuit breakers for dangerous dependencies—turning them into a
set of “Reactive Microliths.”

Figure 5-6. The system, evolved into a set of reactive microliths

We’re getting there, but we still have a set of single-instance micro‐
services—they are neither resilient nor elastic. This is something
that we need to address.

Embrace Reactive Systems
Smalltalk is not only NOT its syntax or the class library, it is not even
about classes. I’m sorry that I long ago coined the term “objects” for this
topic because it gets many people to focus on the lesser idea. The big idea
is ‘messaging’.

—Alan Kay

Reactive Systems—as defined by the Reactive Manifesto—is a set of
architectural design principles (see Figure 5-7) for building modern
distributed systems that are well prepared to meet the demands of
responsiveness under failure (resilience) and under load (elasticity)
that applications need today.
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Figure 5-7. The four traits of a reactive system

Decoupling in Time and Space
Time and space are modes by which we think, and not conditions in
which we live.

—Albert Einstein

The foundation for a Reactive System is asynchronous message-
passing, which helps you to build loosely coupled systems with
autonomous and collaborative components. Having an asynchro‐
nous boundary between components is necessary in order to decou‐
ple them and their communication flow in time (which allows for
concurrency) and space (which allows for distribution and mobi‐
lity).

Elasticity through Location Transparency
Scalability is possibly only if project elements do not form transforma‐
tive relationships that might change the project.

—Anna Tsing, “On Nonscalability”

Traditionally, we are used to relying on different tools and techni‐
ques, with different semantics, across different levels of scale—for
example, using callbacks and interleaving within a single core (as in
Node.js), using threads, locks, and concurrent data structures (as in
standard Java concurrency) when running on multiple cores, and
relying on message queues or Remote Procedure Call (RPC) proto‐
cols (such as Java Message Service [JMS] or Remote Method Invoca‐
tion [RMI]) for communication across nodes and datacenters.
Making all of these paradigms work together in concert, as a single
whole, is full of semantic mismatches.
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6 Elasticity presupposes dynamicity in terms of scaling.

7 As brilliantly explained by Joel Spolsky in his classic piece “The Law of Leaky Abstrac‐
tions”.

8 The fallacies of RPC have not been better explained than in Steve Vinoski’s “Conve‐
nience over Correctness”.

9 As explained by Jim Waldo et al., in their classic paper “A Note on Distributed Comput‐
ing”.

Asynchronous message-passing allows for location transparency,
which gives you one communication abstraction, across all dimen‐
sions of scale—up/down and in/out. One programming model, one
API, with a single set of semantics, regardless of how the system is
deployed or what topology it currently has is an example of this.6

This is where the beauty of asynchronous message-passing comes
in, because it unifies them all, making communication explicit and
first class in the programming model. Instead of hiding it behind a
leaky abstraction7, as is done in RPC,8 EJBs, CORBA, distributed
transactions, and so on.

Location transparency should not be confused with transparent
remoting, or distributed objects (which Martin Fowler claimed
“sucks like an inverted hurricane”). Transparent remoting hides the
network, and tries to make all communication look like its local.
The problem with this approach, even though it might sound com‐
pelling at first, is that local and distributed communication have
vastly different semantics and failure modes.9 Reaching for it only
sets us up for failure. Location transparency does the opposite, by
embracing the constraints of distributed systems.

Another benefit of asynchronous message-passing is that it tends to
shift focus, from low-level plumbing and semantics, to the workflow
and communication patterns in the system and forces you to think
in terms of collaboration—how data flows between the different
services, their protocols, and interaction patterns.

Location Transparency Enables Mobility
But I’ll take my time anywhere. I’m free to speak my mind anywhere.
And I’ll redefine anywhere. Anywhere I roam. Where I lay my head is
home.

—Lars Ulrich, James Hetfield, Wherever I May Roam
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For a service to become location transparent, it needs to be address‐
able separately from “current” location. So, what does that really
mean?

First, addresses need to be stable in the sense that they can be used
to refer to the service indefinitely, regardless of where it is currently
located. This should hold true whether the service is running, has
been stopped, is suspended, is being upgraded, has crashed, and so
on. The address should always work. A client should always be able
to send messages to the address. In practice, the messages might
sometimes be queued up, resubmitted, delegated, logged, or sent to
a dead letter queue (Figure 5-8).
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Figure 5-8. Services should be referenced through virtual stable refer‐
ences

Second, an address needs to be virtual in the sense that it can, and
often does, represent not just one, but an entire set of runtime
instances that together defines the service. Here are some of the rea‐
sons why this can be advantageous:
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10 Sometimes referred to as “Master-Slave,” “Executor-Worker,” or “Master-Minion” repli‐
cation.

11 Locality of reference is an important technique in building highly performant systems.
There are two types of reference locality: temporal (reuse specific data) and spatial
(keep data relatively close in space). It is important to understand and optimize for
both.

Load-balancing between instances of a stateless service
If a service is stateless, it does not matter to which instance a
particular request is sent. Additionally, a wide variety of routing
algorithms can be employed, such as round-robin, broadcast or
metrics-based.

Active-Passive10 state replication between instances of a stateful service
If a service is stateful, sticky routing needs to be used—sending
every request to a particular instance. This scheme also requires
each state change to be made available to the passive instances
of the service (the replicas) each one ready to take over serving
the requests in case of failover.

Relocation of a service
It can be beneficial to move a service instance from one location
to another in order to improve locality of reference11 or resource
efficiency.

Using virtual addressing, through stable references, means that the
client can stay oblivious to all of these low-level runtime concerns. It
communicates with a service through an address and does not need
to care about how and where the service is currently configured to
operate.

These are all essential pieces on the path toward elasticity—a system
that can react to load, react to current usage patterns, and scale its
components adaptively in order to reach its Service-Level Objectives
(SLOs).

Location Transparency Enables Dynamic Composition
Dynamics always trump semantics.

—Mark Burgess, In Search of Certainty

Another benefit of location transparency and communicating
through stable references to services is that it allows for dynamic
composition. The references themselves can be included in messages
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12 Inspired by David Wheeler, who once said, “All problems in computer science can be
solved by another level of indirection.”

and passed around between services. This means that the topology
of the system can change dynamically, at runtime, opening up for
scaling the system in any dimension.

For one service to communicate with another service, it needs to
know the other service’s address. The simplest solutions would be to
hardcode the physical address and port of all the services that a ser‐
vice needs to use, or have them externalized into a configuration file
provided at startup time.

The problem with these solutions is that they force a static deploy‐
ment model, which contradicts everything we are trying to accom‐
plish with microservices. Services need to stay decoupled and
mobile, and the system needs to be elastic and dynamic.

We can address this by adding a level of indirection12 using a pattern
called Inversion of Control (IoC), and taking advantage of location
transparency.

What this means in practice is that each service should report infor‐
mation to the platform about where it is currently running and how
it can be contacted. This is called Service Discovery and is an essen‐
tial part of any microservices architecture.

After the information about each service has been stored, it can be
made available through a Service Registry that services can use to
look up the information using a pattern called Client-Side Service
Discovery.

Another strategy is to have the information stored and maintained
in a load balancer (as done in AWS Elastic Load Balancer) or
directly in the address references that the services use (as done in
Akka Actors) using a pattern called Server-Side Service Discovery.

Self-Healing Through Bulkheading and Supervision
Failure is simply the opportunity to begin again. This time more intelli‐
gently.

—Henry Ford
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13 For an in-depth analysis of what made Titanic sink, see the article “Causes and Effects
of the Rapid Sinking of the Titanic”.

The boundary, or bulkhead, between components/services that
asynchronous messaging enables and facilitates is the foundation for
resilient and self-healing systems, enabling the loose coupling
needed for full isolation between them, as demonstrated in
Figure 5-9.

Figure 5-9. Ships use bulkheads for resilience

Bulkheading is most well known for being used in the ship con‐
struction industry as a way to divide the ship into isolated, water‐
tight compartments. If a few compartments fill with water, the leak
is contained and the ship can continue to function.

The same thinking and technique can be applied successfully to
software. It can help us to arrive at a design that prevents failures
from propagating outside the failed component, avoiding cascading
failures taking down an entire system.

Some people might come to think of the Titanic as a counterexam‐
ple. It is actually an interesting study13 in what happens when you
don’t have proper isolation between the compartments, and how that
can lead to cascading failures, eventually taking down the entire sys‐
tem. The Titanic did use bulkheads, but the walls that were sup‐
posed to isolate the compartments did not reach all the way up to
the ceiling. So, when 6 of its 16 compartments were ripped open by
the iceberg, the ship began to tilt and water spilled over the bulk‐
heads from one compartment to the next, eventually filling up all
compartments and sinking the Titanic, killing 1,500 people.
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14 For a detailed discussion on this pattern, see the Akka documentation on “Supervision
and Monitoring”.

15 Joe Armstrong’s thesis “Making reliable distributed systems in the presence of software
errors” is essential reading on the subject. According to Armstrong, Mike Williams at
Ericsson Labs came up with the idea of “links” between processes, as a way of monitor‐
ing process health and lifecycle, forming the foundation for process supervision.

16 A couple of great, and highly influential, papers on this topic are “Crash Only Software”
and “Recursive Restartability: Turning the Reboot Sledgehammer into a Scalpel”, both
by George Candea and Armando Fox.

Bulkheading complements Supervision,14 which is a general pattern
for managing failure that has been used successfully in Actor lan‐
guages (like Erlang—which invented it15) and libraries (like Akka)
and is an important tool in distributed systems design. Components
are organized into Supervisor Hierarchies, in which parent compo‐
nents supervise and manage the life cycle of its subordinate compo‐
nents. A subordinate never tries to manage its own failure; it simply
crashes on failure and delegates the failure management to its parent
by notifying it of the crash. This model is sometimes referred to as
“Let it Crash” or “Crash-Only Software.”16 The supervisor then can
choose the appropriate failure management strategy. For example,
resume or restart the subordinate, delegate its work, or escalate the
failure to its supervisor.

Figure 5-10 presents an example of a supervisor hierarchy. In this
scenario, one child component fails—by raising an exception. The
exception is captured by the component itself and reified as a failure
message that is sent asynchronously to its supervisor. Upon recep‐
tion of the message, the supervisor now can decide what to do with
the failure. In this example, it decides that it is beyond its responsi‐
bilities to deal with this particular failure, and escalates it up the
hierarchy, by sending it to its supervisor. The top-level supervisor
now decides to restart the entire chain of failed components by
sending it a restart command, recursively, bringing the whole com‐
ponent hierarchy back to a healthy state, ready to take on new tasks.
This is self-healing in action.
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Figure 5-10. Supervisor hierarchies enable self-healing systems

With supervision hierarchies, we can design systems with autono‐
mous components that watch out for one another and can recover
failures by restarting the failed component(s).

Paired with location transparency—given that failures are nothing
but regular messages flowing between the components—we can
scale-out the failure management model across a cluster of nodes,
while preserving the same semantics and simplicity of the program‐
ming model.

Microservices Come as Systems
The Japanese have a small word—ma—for “that which is in between”—
perhaps the nearest English equivalent is “interstitial.” The key in mak‐
ing great and growable systems is much more to design how its modules
communicate rather than what their internal properties and behaviors
should be.

—Alan Kay

We have discussed that microservices come in systems. However,
what is less obvious is that microservices also come as systems. Each
microservice needs to be designed as a system, a distributed one that
needs to work together as a single whole.

We need to move from microliths to microsystems.
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But, how? Let’s begin by looking at the very different requirements
for scaling stateful and stateless components and how we can take
advantage of that in our first steps toward building scalable micro‐
systems.

Scaling State and Behavior Independently
It can be helpful to separate the stateless processing part of the service
—the business logic—from the stateful aggregate—the system of
record. This allows us to decouple them, run them on different
nodes, or in-process on the same node if that is preferred, giving us
the option to tune the availability through scaling.

Separating behavior and state into different processes, potentially
running on different nodes, means that we cannot continue using
local method dispatch for coordination. Instead, we need to coordi‐
nate using commands, sent as messages, in an asynchronous fash‐
ion.

Let’s try that by taking the reactive microlith in Figure 5-6 and split‐
ting off its stateless processing part from its stateful aggregate part
(Figure 5-11).

Figure 5-11. Separating the stateless processing from the stateful aggre‐
gate

Scaling stateless processing is trivial. It can be scaled linearly—
assuming nonshared infrastructure—in a fully automatic fashion.
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17 As always, it depends. A stateless architecture could work fine for sharded workloads,
using consistent hashing algorithms, and a highly available database like Cassandra.

18 There are ways to support multiple concurrently active aggregates. As an example, we
are currently building out a solution for Akka Persistence that is based on operation-
based CRDTs and vector clocks.

19 Akka Cluster is a decentralized, node ring–based, cluster management library for Akka
that is using epidemic gossip protocols, and failure detection, in a similar fashion as
Amazon’s Dynamo.

One example of this is AWS Lambda—kicking off the “serverless”
trend—which scales stateless functions automatically within the
boundaries of the SLOs that have been defined, without human
intervention.

The processing instance is usually where we put translation logic,
translating between different protocols or between different versions
of the same protocol. It can function as the service’s Anti-
Corruption Layer, protecting the Bounded Context (the service
itself) from the messiness of the world outside its boundary.

Scaling state, however, is very difficult. For services that do not have
the luxury of being “forgetful” and need to read/write state, delegat‐
ing to a database only moves the problem to the database. We still
need to deal with the coordination of reading and writing. Ignoring
the problem by calling the architecture “stateless” with “stateless”
services, effectively pushing them down into a shared database, will
only delegate the problem, push it down the stack, and make it more
difficult to control in terms of data integrity, scalability, and availa‐
bility guarantees.17

The aggregate instance is the single, strongly consistent, source of
truth for the service and therefore can be allowed to run only a sin‐
gle active instance at a time.18 It is usually deployed in an active-
passive clustering scheme with a set of replicas ready to take over on
failure.

Enter Reactive Microsystems
Now, we are in a position to scale-out the stateless processing part of
our microservice to N number of nodes, and set up the stateful
aggregate part in an active-passive manner for seamless failover.

We can do this in different ways. For example, in the Lagom micro‐
services framework, each service is backed by an Akka Cluster,19

46 | Chapter 5: Toward Reactive Microsystems

http://doc.akka.io/docs/akka/current/scala/persistence.html
http://bit.ly/2vdK8zb
https://aws.amazon.com/lambda/
https://martinfowler.com/articles/serverless.html
https://en.wikipedia.org/wiki/High-availability_cluster
https://en.wikipedia.org/wiki/High-availability_cluster
https://www.lagomframework.com
http://doc.akka.io/docs/akka/current/java/cluster-usage.html


which will, among other things, ensure that all the service’s aggre‐
gates are spread out on the available nodes and restarted on a
healthy node upon node failure.

What we end up with is a system of (potentially) distributed parts
that all need to work in concert, while being scaled alongside differ‐
ent axes—a microsystem (see Figure 5-12).

This design not only gives us increased scalability, but also resil‐
ience, by ensuring that there is always another node that can serve
requests and take over processing or state management in the case
of node failure.

To reap the full benefits of this design we need to apply the princi‐
ples of Reactive Systems across the board. All components within
the microsystem are part of a larger distributed system and need to
communicate over asynchronous message-passing. The components
need to be made mobile and location transparent, allowing the ser‐
vice to be elastic from within, and they need to be fully isolated and
supervised by failure detection schemes to allow the microsystem as
a whole to self-heal and stay resilient.
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Figure 5-12. A scalable and resilient microservice consists of multiple
distributed components—a microsystem

Figure 5-12 shows that we have added core infrastructure services
like service discovery, anticorruption layer, authentication, security,
and so on to the system. It is paramount to see them as part of the
distributed system of the service—the microsystem—itself, to be
able to take their constraints in terms of failure modes, availability,
and scalability guarantees into account, instead of being surprised
by them (most often at the most inappropriate time).
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CHAPTER 6

Toward Scalable Persistence

Anything you build on a large scale or with intense passion invites
chaos.

—Francis Ford Coppola

Up to this point, we have discussed the evolution of a monolith,
through a system of microliths, to a design based on scalable and
resilient microsystems. But, we have made it too easy for ourselves
by ignoring the most difficult problem of them all: scaling state and,
in particular, durable state.

Let’s address this and look at how we can scale state (while staying
available) in an event-based design, alongside the new opportunities
and constraints such a design enables. First and foremost, it requires
a new way of thinking about persistence and consistency, with the
first step being to move beyond CRUD.

Moving Beyond CRUD
When bookkeeping was done with clay tablets or paper and ink,
accountants developed some clear rules about good accounting practices.
One never alters the books; if an error is made, it is annotated and a
new compensating entry is made in the books. The books are thus a
complete history of the transactions of the business.
Update-in-place strikes many systems designers as a cardinal sin: it vio‐
lates traditional accounting practices that have been observed for hun‐
dreds of years.

—Jim Gray, The Transaction Concept, 1981
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1 This is general advice that is meant to guide the design and thought process; by no
means is it a rule. There might be legal (data-retention laws), or moral (users request‐
ing their account to be deleted) requirements to physically delete data after a particular
period of time. Still, using traditional CRUD is most often the wrong way to think
about the design of such a system.

2 The quote is taken from Pat Helland’s insightful paper “Immutability Changes Every‐
thing”.

Disk space used to be very expensive. This is one of the reasons why
most SQL databases are using update-in-place—overwriting existing
records with new data as it arrives.

As Jim Gray, Turing Award winner and legend in database and
transaction processing research, once said, “Update-in-place strikes
many systems designers as a cardinal sin: it violates traditional
accounting practices that have been observed for hundreds of years.”
Still, money talked, and CRUD was born.

The good news is that today disk space is incredibly cheap so there is
little-to-no reason to use update-in-place for System of Record. We
can afford to store all data that has ever been created in a system,
giving us the entire history of everything that has ever happened in
it.

We don’t need Update and Delete anymore.1 We just Create new facts
—either by adding more knowledge, or drawing new conclusions
from existing knowledge—and Read facts, from any point in the his‐
tory of the system. CRUD is no longer necessary.

The question is this: how can we do this efficiently? Let’s turn our
attention to Event Logging.

Event Logging—The Scalable Seamstress
The truth is the log. The database is a cache of a subset of the log.

—Pat Helland2

One of the most scalable ways to store facts is in an Event Log. It
allows us to store them in their natural causal order—the order in
which they were created.

The event log is not just a database of the current state like tradi‐
tional SQL databases, but a database of everything that has ever hap‐
pened in the system, its full history. Here, time is a natural index,
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3 Well-designed event sourcing implementations, such as Akka Persistence, will shard
your entities across the cluster and route commands to the shards accordingly, so the
aggregate is only cached in one place and doesn’t need any replication or synchroniza‐
tion.

making it possible for you to travel back and replay scenarios for
debugging purposes, auditing, replication, failover, and so on. The
ability to turn back time and debug the exact things that have hap‐
pened, at an exact point in the history of the application, should not
be underestimated.

Event Sourcing—A Cure for the Cardinal Sin
A popular pattern for event logging is event sourcing, in which we
capture the state change—triggered by a command or request—as a
new event to be stored in the event log. These events represent the
fact that something has happened (i.e., OrderCreated, PaymentAu‐
thorized, or PaymentDeclined).

One benefit of using event sourcing is that it allows the aggregate to
cache the dataset3—the latest snapshot—in memory, instead of hav‐
ing to reconstitute it from durable storage every request (or periodi‐
cally)—something that is often seen when using raw SQL, Java
Database Connectivity (JDBC), Object-Relational Mapping (ORM),
or NoSQL databases. This pattern is often referred to as a Memory
Image, and it helps to avoid the infamous Object-Relational Impe‐
dance Mismatch. It allows us to store the data in-memory inside our
services, in any format that we find convenient, whereas the master
data resides on disk in an optimal format for append-only event log‐
ging, ensuring efficient write patterns—such as the Single Writer
Principle—that are working in harmony with modern hardware,
instead of at odds with it. If we now add Command Query Responsi‐
bility Segregation (CQRS, discussed in a moment) to the mix, to
address the query and consistency problems, we have the best of
both worlds without much of the drawbacks.

The events are stored in causal order, providing the full history of all
the events representing state changes in the service (and in case of
the commands, the interactions with the service). Because events
most often represent service transactions, the event log essentially
provides us with a transaction log that is explicitly available to us for
querying, auditing, replaying messages from an arbitrary point in
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time for failover, debugging, and replication—instead of having it
abstracted away from the user, as seen in Relational Database Man‐
agement Systems (RDBMS’s).

Each event-sourced aggregate usually has an event stream through
which it is publishing its events to the rest of the world—for exam‐
ple, such as through Apache Kafka. The event stream can be subscri‐
bed to by many different parties, for different purposes. Examples
include a database optimized for queries, microservices/aggregates
that react to events as a way of coordinating workflow, and support‐
ing infrastructure services like audit or replication.

Untangle Your Read and Write Models by using CQRS
CQRS is a technique, coined by Greg Young, to separate the write
and read model from each other, opening up for using different
techniques to address each side of the equation.

The read model is most often referred to as the query side in CQRS,
but that somewhat misses the main point. The read model is better
defined as anything that depends on the data that was written by the
write model. This includes query models, but also other readers sub‐
scribing to the event stream—including other services performing a
side effect, or any downstream system that acts in response to the
write. As we will see in“Coordinating Work Across Aggregates” on
page 54, this broader view of the read model, powered by the event
stream, can be the foundation for reliably orchestrating workflow
across services, including techniques for managing consistency
guarantees and at-least-once delivery of commands.

The write and read models exhibit very different characteristics and
requirements in terms of data consistency, availability, and scalabil‐
ity. The benefit of CQRS is that it allows both models to be stored in
its optimal format.

There are two main advantages of using CQRS:

Resilience
Separating the read and write models gives us temporal decou‐
pling of the writes and the actions performed in response to the
writes—whether it’s updating an index in a query database,
pushing the events out for stream processing, performing a
side-effect, or coordinating work across other services. Tempo‐
ral decoupling means that the service doing the write as well as
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the service performing the action in response to the write don’t
need to be available at the same time. This avoids the need to
handle things like retries, increases reliability, stability, and
availability in the system as a whole, and allows for eventual
consistency (as opposed to no consistency guarantees at all).

Scalability
The temporal decoupling of reads and writes gives us the ability
to scale them independently of one another. For example, in a
heavily loaded read-mostly system, we can choose to scale-out
the query side to tens or even hundreds of nodes, while keeping
the write side to three to five nodes for availability, or vice versa
for a write-mostly system (probably using sharding techniques).
A decoupled design like this makes for a lot of flexibility, gives
us more headroom and knobs to turn, and allows us to better
optimize the hardware efficiency, putting the money where it
matters most.

It’s worth mentioning that CQRS is a general design pattern that you
can use successfully together with almost any persistence strategy
and storage backends, but it happens to fit perfectly together with
event sourcing in the context of event-driven and message-driven
architectures, which is the reason why you will often hear them
mentioned in tandem. The opposite is also true: you can use event
sourcing successfully without CQRS, reaping the benefits of the
event-driven model, log-based structure, historic traceability, and so
on, with the option of adding in CQRS at a later point in time, if the
need arises.

Figure 6-1 shows the flow of commands and events in an event-
sourced service. It begins with a Command (SubmitPayment) sent to
a service (Payments) from an external “user” of the service (Orders).
The Command flows through the boundary of the Bounded Context
for the service and is received by the Processing Layer, where it is
validated, translated, and so on before the business logic is executed
and a new Command (ApprovePayment)—representing the intent to
change the service’s state—is created and sent to the service’s Aggre‐
gate. The Aggregate receives the Command and creates an Event
(PaymentApproved) representing the state change, and stores it in its
Event Log. After the Event is successfully saved, it is pushed to the
Event Stream for public consumption, where it is relayed to its sub‐
scribers (in this case the Orders service and the Payment Query
Database).
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Figure 6-1. The flow of commands and events in the payments service

A design like this helps with scalability, resilience, and consistency,
allowing a failed service to resume processing another service’s event
stream after restart (or even replay parts of the stream if the context
is lost).

Coordinating Work Across Aggregates
Nature laughs at the difficulties of integration.

—Pierre-Simon Laplace

As just discussed, each event-sourced aggregate has an Event Stream
that is available for anyone to subscribe to. These event streams can
be used to coordinate work across aggregates by means of chaining
events, with the completion (or intent) of each step in the workflow
represented by an event; for example, OrderCreated, PaymentAp‐
proved, or PaymentDeclined, where the next step in the process is
started upon the reception of the previous event.
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A simple way to help you name events is to remember that they
should be a past-tense description of what happened. Unlike com‐
mands, which would be phrased in the imperative (CreateOrder,
SubmitPayment, and ShipProducts).

One of the benefits of this event-driven approach to aggregate coor‐
dination and workflow management is that it is very resilient—
thanks to being decoupled, asynchronous, and nonblocking, with all
events already made durable and replayable upon failure. It also is
fairly easy and intuitive to understand and to wire-up in terms of
event subscriptions.

Some people call this the Process Manager pattern.

Figure 6-2 presents an example of how we can use a Process Manager
to coordinate the work between the Orders, Inventory, and Payment
aggregates, by subscribing to events in the Event Stream. All com‐
munication here (except potentially step 1 and 11) are done over
asynchronous message-passing. In this illustration, I have omitted
the event log for simplicity.

Figure 6-2. Using a Process Manager to coordinate work between mul‐
tiple services

The order management process runs as follows:
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1. The Orders service starts a workflow by initiating the processing
of a new order.

2. The Process Manager sets up the workflow by subscribing to the
interesting events in the Event Stream: ProductsReserved, Pay‐
mentApproved, PaymentDeclined, and ProductsShipped (this is,
of course, drastically simplified compared to a real-world solu‐
tion). It then tries to reserve the products by sending a Reserve‐
Products command to the Inventory service.

3. The Inventory service reserves the products, creates a Products‐
Reserved event, stores it in the Event Log, and emits it to the
Event Stream.

4. The Process Manager receives the ProductsReserved event and
starts the next phase in the workflow: the payment of the prod‐
ucts.

5. The Process Manager initiates the payment process by sending a
SubmitPayment command to the Payments service.

6. The Payments service tries to verify the payment, and, if suc‐
cessful, creates and emits a PaymentApproved event to the Event
Stream (if the payment is not successful, it emits a PaymentDe‐
clined event).

7. The Process Manager receives the PaymentApproved event and
starts the final phase in the workflow: shipping the products.

8. The Process Manager initiates the shipping process by sending a
ShipProducts command to the Inventory service.

9. The Inventory service completes the shipping, and emits a Pro‐
ductsShipped event to the Event Stream.

10. The Process Manager receives the ProductsShipped event, mark‐
ing the end of the ordering process.

11. The Process Manager notifies the Orders service of the successful
completion of the order.

Leverage Polyglot Persistence
The limits of my language means the limits of my world.

—Ludwig Wittgenstein

As we have already discussed, CQRS makes it possible for us to
build on the event-sourcing foundation by having the query side
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subscribe to the aggregate’s Event Stream (the write side), consuming
successfully saved events and storing them in an optimal representa‐
tion for queries.

This design allows us to have multiple read models (views), each one
maintaining its own view of the data. For example, you could use
Cassandra, a SQL database, or Spanner for regular queries, Elastic‐
Search for general search, and HDFS for batch-oriented data min‐
ing.

If you are using CQRS with event sourcing, you can even add addi‐
tional views dynamically, at any point in time, because you can sim‐
ply replay the event log—the history—to bring the new view up to
speed.

When it comes to the read side there are many options:

• Traditional RDBMSs, like MySQL, Oracle, or Postgres
• Scalable distributed SQL, like Spanner or CockroachDB
• Key-value-based, like DynamoDB, or Riak
• Column-oriented, like HBase, or Vertica
• Hybrid key-value/column-oriented, like Cassandra
• Document-oriented, like MongoDB or Couchbase
• Graph-oriented, like Neo4j or AllegroGraph
• Time–series-based, like OpenTSDB or InfluxDB
• Streaming products, like Flink or Kafka Streams
• Distributed file systems, like HDFS or Alluxio
• Search products, like ElasticSearch

You’ll notice that all those data stores have very different “sweet
spots” and are optimized for different access patterns.

As an example, if you want to build a graph of friends, and run
queries along the lines of “who’s my friend’s best friend?”, this query
will be most efficiently answered by a graph-oriented database (such
as Neo4j). A graph database is easily populated dynamically, as
friends are adding each other on your social site, by subscribing to
the Friend aggregate’s Event Stream. In the same way, you can build
other views, using read-specialized databases from your event
streams, in real time.
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4 You can find a good definition of the difference between essential complexity and acci‐
dental complexity here.

In other words, by having the event log as the single source of truth in
your system, you easily can produce any kind of view on the data
that works best for the specific use-case—so-called Polyglot Persis‐
tence.

Know Your Trade-offs
There are no solutions; there are only trade-offs.

—Thomas Sowell

One trade-off is that CQRS with event sourcing forces you to tackle
the essential complexity4 of the problem head on. This is often a good
thing, but if you are building a minimum viable product (MVP) or
prototype, a throwaway that you need to get to market quickly in
order to test an idea, you might be better off starting with CRUD
(and a monolith), moving to a more sustainable design after it has
proved its value in the market.

Another trade-off in moving to an architecture based on CQRS with
event sourcing is that the write side and read side will be eventually
consistent. It takes time for events to propagate between the two
storage models, which often reside on separate nodes or clusters.
The delay is often only a matter of milliseconds to a few seconds, but
it can have a big impact on the design of your system.

Using techniques such as a reactive design and event-driven design,
denormalization, minimized units of consistency are essential, and
makes these trade-offs less of an issue.

In general, it is important to take a step back from years of precon‐
ceived knowledge and biases, and look at how the world actually
works. The world is seldom strongly consistent, and embracing real‐
ity, and the actual semantics in the domain, often opens up opportu‐
nities for relaxing the consistency requirements.

One problem that all persistence approaches have—but for which
event sourcing together with CQRS offers a straightforward solution
—is the fact that saving the event, and executing the side-effect that
the event represents, often can’t be performed as a single atomic
operation. The best strategy is to rely on acknowledgements (the
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events) pushed through the event stream, and think in terms of at-
least-once execution of the side-effects, which means that you must
consider whether to make the side-effect idempotent.

You have two options:

• Perform the side-effect before persisting the event, with the risk
that the side-effect is performed but the event is never stored.
This pattern works well when you can depend on the upstream
to retry an operation—by resubmitting the command—until it
is successful. It can be done by subscribing to the aggregate’s
event stream (as previously discussed), waiting for the acknowl‐
edgement (the event itself) that the event was persisted success‐
fully, and if not received within a specific time window,
resubmitting the command.

• Store an event representing the intent to perform the side-effect,
perform the side-effect itself, and finally persist an event—the
acknowledgment—that the side-effect was successfully per‐
formed. In this style, you take on the responsibility of executing
the action, so upon replay you then can choose to reexecute the
side-effect if the acknowledgement is missing.

Finally, one thing to take into account is that using CQRS with event
sourcing makes it more difficult to delete data—which is something
that is becoming increasingly important, for both legal and moral
reasons. First, we need to manage deletion of the events in the event
log. There are many different strategies for this, but discussing them
is beyond the scope of this report. Second, the events also have been
made available through the aggregate’s event stream, where they
could have been picked up by several other databases, systems, and
services. Keeping track of where all events end up is a nontrivial
exercise that needs to be thought through carefully when designing
the system (and be maintained throughout long-term evolution of
the system).

Transactions—The Anti-Availability Protocol
Two-phase commit is the anti-availability protocol.

—Pat Helland

At this point, you might be thinking, “But what about transactions? I
really need transactions!”
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5 The infamous, and far too common, anti-pattern “Integrating over Database” comes to
mind.

6 This quote is from Pat Helland’s excellent paper “Life Beyond Distributed Transac‐
tions”.

Let’s begin by making one thing clear: transactions are fine within
individual services, where we can, and should, guarantee strong
consistency. This means that it is fine to use transactional semantics
within a single service (the bounded context)—which is something
that can be achieved in many ways: using a traditional SQL database
like Oracle, a modern distributed SQL database like CockroachDB,
or using event sourcing through Akka Persistence. What is problem‐
atic is expanding them beyond the single service, as a way of trying
to bridge data consistency across multiple services (i.e. bounded
contexts).5

The problem with transactions is that their only purpose is to try to
maintain the illusion that the world consists of a single globally
strongly consistent present—a problem that is magnified exponen‐
tially in distributed transactions (XA, Two-phase Commit, and
friends). We already have discussed this at length: it is simply not
how the world works, and computer science is no different.

As Pat Helland says,6 “Developers simply do not implement large scal‐
able applications assuming distributed transactions.”
If the traits of scalability and availability are not important for the
system you are building, go ahead and knock yourself out—XA and
two-phase commit are waiting. But if it matters, we need to look
elsewhere.

Don’t Ask for Permission—Guess, Apologize, and
Compensate

It’s easier to ask for forgiveness than it is to get permission.
—Grace Hopper

So, what should we do? Let’s take a step back and think about how
we deal with partial and inconsistent information in real life.

For example, suppose that we are chatting with a friend in a noisy
bar. If we can’t catch everything that our friend is saying, what do we
do? We usually (hopefully) have a little bit of patience and allow
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7 It’s worth reading Pat Helland’s insightful article “Memories, Guesses, and Apologies”.
8 See Clemens Vasters’ post “Sagas” for a short but good introduction to the idea. For a

more in-depth discussion, putting it in context, see Roland Kuhn’s excellent book Reac‐
tive Design Patterns (Manning).

ourselves to wait a while, hoping to get more information that can
fill out the missing pieces. If that does not happen within our win‐
dow of patience, we ask for clarification, and receive the same or
additional information.

We do not aim for guaranteed delivery of information, or assume
that we can always have a complete and fully consistent set of facts.
Instead, we naturally use a protocol of at-least-once message delivery
and idempotent messages.
At a very young age, we also learn how to take educated guesses
based on partial information. We learn to react to missing informa‐
tion by trying to fill in the blanks. And if we are wrong, we take com‐
pensating actions.
We need to learn to apply the same principles in system design, and
rely on a protocol of: Guess; Apologize; Compensate.7 It’s how the
world works around us all the time.

One example is ATMs. They allow withdrawal of money even under
a network outage, taking a bet that you have sufficient funds in your
account. And if the bet proved to be wrong, it will correct the
account balance—through a compensating action—by deducting the
account to a negative balance (and in the worst case the bank will
employ collection agencies to recuperate any incurred debt).

Another example is airlines. They deliberately overbook aircrafts,
taking a bet that not all passengers will show up. And if they were
wrong, and all people show up, they then try to bribe themselves out
of the problem by issuing vouchers—performing compensating
actions.
We need to learn to exploit reality to our advantage.

Use Distributed Sagas, Not Distributed Transactions
The Saga pattern8 is a failure-management pattern that is a com‐
monly used alternative to distributed transactions. It helps you to
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9 Originally defined in the paper “Sagas” by Hector Garcia-Molina and Kenneth Salem.
10 For an in-depth discussion, see Catie McAffery’s great talk on Distributed Sagas.

manage long-running business transactions that make use of com‐
pensating actions to manage inconsistencies (transaction failures).

The pattern was defined by Hector Garcia-Molina in 19879 as a way
to shorten the time period during which a database needs to take
locks. It was not created with distributed systems in mind, but it
turns out to work very well in a distributed context.10

The essence of the idea is that one long-running distributed transac‐
tion can be seen as the composition of multiple quick local transac‐
tional steps. Every transactional step is paired with a compensating
reversing action (reversing in terms of business semantics, not neces‐
sarily resetting the state of the component), so that the entire dis‐
tributed transaction can be reversed upon failure by running each
step’s compensating action. Ideally, these steps should be commuta‐
tive so that they can be run in parallel.

The Saga is usually conducted by a coordinator, a single centralized
Finite State Machine, that needs to be made durable—preferably
event logged, to allow replay on failure.

One of the benefits of this technique (see Figure 6-3) is that it is
eventually consistent and works well with decoupled and asynchro‐
nously communicating components, making it a great fit for event-
driven and message-driven architectures.
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Figure 6-3. Using Sagas for failure management of long-running dis‐
tributed workflows across multiple services
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11 For an understanding about how Spanner works, see the original paper, “Spanner:
Google’s Globally-Distributed Database”.

12 If you are interested in this, be sure to read Eric Brewer’s “Spanner, TrueTime, and the
CAP Theorem”.

As we have seen, the Saga pattern is a great tool for ensuring atomic‐
ity in long-running transactions. But, it’s important to understand
that it does not provide a solution for isolation. Concurrently exe‐
cuted Sagas could potentially affect one another and cause errors. If
this is acceptable, it is use-case dependent. If it’s not acceptable, you
need to use a different strategy, such as ensuring that the Saga does
not span multiple consistency boundaries or simply using a different
pattern or tool for the job.

Distributed Transactions Strikes Back
No. Try not. Do... or do not. There is no try.

—Yoda, The Empire Strikes Back

After this lengthy discussion outlining the problems with transac‐
tions in a distributed context and the benefits of using event logging,
it might come as a surprise to learn that SQL and transactions are on
the rise again.

Yes, SQL and SQL-style query languages are becoming popular
again. We can see it used in the big data community as a way of
querying large datasets. For example, Hive and Presto, as well as the
NoSQL community, allow for richer queries than key/value lookups,
such as Cassandra (with its CQL) and Google’s Cloud Spanner.

Spanner11 is particularly interesting because it is not only supporting
SQL, but has managed to implement large-scale distributed transac‐
tions in a both scalable and highly-available manner. It is not for the
faint of heart, considering that Google runs it on a private and
highly optimized global network, using Paxos groups, coordinated
using atomic clocks, and so on.12

It’s worth mentioning that there is an open source implementation
of Spanner called CockroachDB that can be worth looking into if
you have use-cases that fit this model. However, they will not be a
good fit if you are expecting low-latency writes from your datastore.
These datastores choose to give up on latency—by design—in order
to achieve high consistency guarantees.
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13 For more information, see “Highly Available Transactions: Virtues and Limitations”, by
Peter Bailis et al.

14 One fascinating paper on this topic is “Coordination Avoidance in Database Systems”
by Peter Bailis et al.

15 A must-see talk, explaining the essence of problem, and painting a vision for where we
need to go as an industry, is Peter Alvaro’s excellent RICON 2014 keynote “Outwards
from the Middle of the Maze”.

Another recent discovery is that many of the traditional RDBMS
guarantees that we have learned to use and love are actually possible
to implement in a scalable and highly available manner. Peter Bailis
et al. have shown13 that we could, for example, keep using Read
Committed, Read Uncommitted, and Read Your Writes, whereas we
must give up on Serializable, Snapshot Isolation, and Repeatable
Read. This is recent research but something I believe more SQL and
NoSQL databases should start taking advantage of in the near
future.

So, SQL, distributed transactions, and more refined models on how
to manage data consistency at scale,14 are on the rise. Though new,
these models are backed by very active and promising research, and
worth keeping an eye on. This is great news, since managing data
consistency in the application layer has never been something that
we developers are either good at, or enjoy.15 It’s been a necessary evil
to get the job done.
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1 We are using Tyler Akidau’s definition of streaming: “A type of data processing engine
that is designed with infinite data sets in mind”, from his article “The world beyond
batch: Streaming 101”.

CHAPTER 7

The World Is Going Streaming

You could not step twice into the same river. Everything flows and noth‐
ing stays.

—Heraclitus

The need for asynchronous message-passing not only includes
responding to individual messages or requests, but also to continu‐
ous streams of data, potentially unbounded streams. Over the past
few years, the streaming landscape has exploded in terms of both
products and definitions of what streaming really means.1

There’s no clear boundary between processing of messages that are
handled individually and data records that are processed en masse.
Messages have an individual identity and each one requires custom
processing, whereas we can think of records as anonymous by the
infrastructure and processed as a group. However, at very large vol‐
umes, it’s possible to process messages using streaming techniques,
whereas at low volumes, records can be processed individually.
Hence, the characteristics of data records versus messages is an
orthogonal concern to how they are processed.

The fundamental shift is that we’ve moved from “data at rest” to
“data in motion.” The data used to be offline and now it’s online.
Applications today need to react to changes in data in close to real
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time—when it happens—to perform continuous queries or aggrega‐
tions of inbound data and feed it—in real time—back into the appli‐
cation to affect the way it is operating.

Three Waves Toward Fast Data
The first wave of big data was “data at rest.” We stored massive
amounts in Hadoop Distributed File System (HDFS) or similar, and
then had offline batch processes crunching the data over night, often
with hours of latency.

In the second wave, we saw that the need to react in real time to the
“data in motion”—to capture the live data, process it, and feed the
result back into the running system within seconds and sometimes
even subsecond response time—had become increasingly important.

This need instigated hybrid architectures such as the Lambda Archi‐
tecture, which had two layers: the “speed layer” for real-time online
processing and the “batch layer” for more comprehensive offline
processing. This is where the result from the real-time processing in
the “speed layer” was later merged with the “batch layer.” This model
solved some of the immediate need for reacting quickly to (at least a
subset of) the data. But, it added needless complexity with the main‐
tenance of two independent models and data processing pipelines,
as well as a data merge in the end.

The third wave—that we have already started to see happening—is
to fully embrace “data in motion” and, where possible, move away
from the traditional batch-oriented architecture altogether toward a
pure stream-processing architecture.

Leverage Fast Data in Microservices
The third wave—distributed streaming—is the one that is most
interesting to microservices-based architectures.

Distributed streaming can be defined as partitioned and distributed
streams, for maximum scalability, working with infinite streams of
data—as done in Flink, Spark Streaming, and Google Cloud Data‐
flow. It is different from application-specific streaming, performed
locally within the service, or between services and client/service in a
point-to-point fashion—which we covered earlier, and includes pro‐
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tocols such as Reactive Streams, Reactive Socket, WebSockets,
HTTP 2, gRPC, and so on.

If we look at microservices from a distributed streaming perspective,
microservices make great stream pipeline endpoints, bridging the
application side with the streaming side. Here, they can either ingest
data into the pipeline—data coming from a user, generated by the
application itself, or from other systems—or query it, passing the
results on to other applications or systems. Using an integration
library that understands streaming, and back-pressure, natively like
Alpakka (a Reactive Streams-compatible integration library for
Enterprise Integration Patterns based on Akka Streams)—can be
very helpful.

From a microservices perspective, distributed streaming has
emerged as a powerful tool alongside the application, where it can
be used to crunch application data and provide analytics functional‐
ity to the application itself, in close to real time. It can help with ana‐
lyzing both user provided business data as well as metadata and
metrics data generated by the application itself—something that can
be used to influence how the application behaves under load or fail‐
ure, by employing predictive actions.

Lately, we also have begun to see distributed streaming being used as
the data distribution fabric for microservices, where it serves as the
main communication backbone in the application. The growing use
of Kafka in microservices architecture is a good example of this pat‐
tern.

Another important change is that although traditional (overnight)
batch processing platforms like Hadoop could get away with high
latency and unavailability at times, modern distributed streaming
platforms like Spark, Flink, and Google Cloud Dataflow need to be
Reactive. That is, they need to scale elastically, reacting adaptively to
usage patterns and data volumes; be resilient, always available, and
never lose data; and be responsive, always deliver results in a timely
fashion.

We also are beginning to see more microservices-based systems
grow to be dominated by data, making their architectures look more
like big pipelines of streaming data.
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To sum things up: from an operations and architecture perspective,
distributed streaming and microservices are slowly unifying, both
relying on Reactive architectures and techniques to get the job done.
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1 The failures of SOA, CORBA, EJB,2 and synchronous RPC are well worth studying and
understanding.

2 Check out Bruce Tate, Mike Clark, Bob Lee, Patrick Linskey’s book, Bitter EJB (Man‐
ning).

3 Successful platforms with tons of great design ideas and architectural patterns have so
much to teach us—for example, Tandem Computer’s NonStop platform, the Erlang
platform, and the BitTorrent protocol.

CHAPTER 8

Next Steps

We have covered a lot of ground in this report, yet for some of the
topics we have just scratched the surface. I hope it has inspired you
to learn more and to roll up your sleeves and try these ideas out in
practice.

Further Reading
Learning from past failures1 and successes3 in distributed systems
and collaborative services-based architectures is paramount. Thanks
to books and papers, we don’t need to live through it all ourselves
but have a chance to learn from other people’s successes, failures,
mistakes, and experiences.

There are a lot of references throughout this report, I very much
encourage you to read them.

When it comes to books, there are so many to recommend. If I had
to pick two that take this story further and provide practical real-
world advice, they would be Roland Kuhn’s excellent Reactive Design
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4 Lagom means “just right,” or “just the right size,” in Swedish and is a humorous answer
to the common but nonsensical question, “What is the right size for a microservice?”

Patterns (Manning) and Vaughn Vernon’s thorough and practical
Implementing Domain-Driven Design (Addison-Wesley).

Start Hacking
The good news is that you do not need to build all of the necessary
infrastructure and implement all the patterns from scratch yourself.
The important thing is understanding the design principles and phi‐
losophy. When it comes to implementations and tools, there are
many off-the-shelf products that can help you with the implementa‐
tion of most of the things we have discussed.

One of them is the Lagom4 microservices framework, an open
source, Apache 2–licensed framework with Java and Scala APIs.
Lagom pulls together most of the practices and design patterns dis‐
cussed in this report into a single, unified framework. It is a formali‐
zation of all the knowledge and design principles learned over the
past eight years of building microservices and general distributed
systems in Akka and Play Framework.

Lagom is a thin layer on top of Akka and Play, which ensures that it
works for massively scalable and always available distributed sys‐
tems, hardened by thousands of companies for close to a decade. It
also is highly opinionated, making it easy to do the right thing in
terms of design and implementation strategies, giving the developer
more time to focus on building business value.

Here are just some of the things that Lagom provides out of the box:

• Asynchronous by default:
— Async IO
— Async Streaming—over WebSockets and Reactive Streams
— Async Pub/Sub messaging—over Kafka
— Intuitive DSL for REST over HTTP, when you need it

• Event-based persistence:
— CQRS and Event Sourcing—over Akka Persistence and Cas‐

sandra
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— Great JDBC and JPA support
• Resilience and elasticity of each microsystem through:

— Decentralized peer-to-peer cluster membership
— Consistency through CRDTs over epidemic gossip protocols
— Failure detection, supervision, replication, and automatic

failover/restart
— Circuit breakers, service discovery, service gateway, and so

on
• Highly productive (Rails/JRebel-like) iterative development

environment:
— Hot code reload on save and so on.
— Automatic management of all infrastructure
— IDE integrations

Let Lagom do the heavy lifting. Have fun.
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