bla bla microservices bla bla

Author: Jonas Bonér

It seems like everyone is talking, writing, and thinking about Microservices—me in-
cluded. Still, there is more confusion around what it is, and how to deliver on it, than
ever. Today we are going to take a look at Microservices from first principles and its

true context: distributed systems.

Reality Has Caught Up On Us

Truth be told, we have been spoiled by the once-believed almighty Monolith, with its
single SQL database, for way too long. Its fairytale world where we could assume
strong consistency, one single globally consistent «now» where we could comfortably
forget our university classes on distributed systems.

Knock, knock. Who’s there? Reality. We have been living in an illusion—far from
reality.

Today's applications are deployed to everything from mobile devices to cloud-
based clusters running thousands of multi-core processors. Users expect millisecond
response times and close to 100% uptime. And by «user» I mean both humans and
machines.

Traditional architectures, tools and products such as JEE and Spring Framework
simply won’t cut it anymore. We can’t make the horse faster anymore, we need cars
for where we are going.

So it’s time to wake up, to retire the monolith, to decompose the system into
manageable, discrete services that can be scaled individually, that can fail, be rolled

out and upgraded in isolation.

The Reactive Essence of a Microservice

Asynchronous Communication, Isolation, Autonomicity, Single Responsibility, Exclu-
sive State, and Mobility. These are the core traits of Microservices. Let's discuss each

one of these in a bit more detail.



Go Asynchronous

It is unfortunate that synchronous HTTP is widely considered as the go-to Microser-
vice communication protocol. Its synchronous nature introduces strong coupling be-
tween services which makes it a very bad default protocol for inter-service communica-
tion.

Instead, communication between Microservices needs to be based on Asyn-
chronous Message-Passing. Having an asynchronous boundary between services is nec-

essary in order to decouple them, and their communication flow,

- in time: for concurrency, and

- in space: for distribution and mobility

Isolate All the Things

Isolation is the most important trait, the foundation for many of the high-level bene-
fits in Microservices, and it is also the trait that has the biggest impact on your de-
sign and architecture. It will slice up your architecture. It will impact the way you or-
ganize your teams and their responsibilities, as Melvyn Conway discovered in the 60’s
and was later turned into Conway’s Law.

Isolation of failure—being able to contain and manage failure without having it
cascade—is a pattern sometimes referred to as Bulkheading.

Bulkheading has been used in the ship construction industry for centuries as a
way to divide the ship into isolated watertight compartments, so that if a few com-
partments are filled up with water, the leak does not spread and the ship can continue
to function and reach its destination.

Resilience—the ability to heal from failure—depends on compartmentalization
and containment of failure, and can only be achieved by breaking free from the strong
coupling of synchronous communication.

The good news is that today we have a much more refined foundation for isola-

tion of services, using virtualization, Docker, Unikernels.

Act Autonomously

Isolation is a prerequisite for autonomy and mobility. Only when services are isolated
can they be fully autonomous and make decisions independently, act independently,

and cooperate and coordinate with others to solve problems.

Do One Thing, and Do It Well

The word Microservice is a terrible word. It implies size which make people argue
about how many LOC a service can have and still be micro. We need to stop this

madness.



It is about one thing: scope of responsibility—adhering to the Single Responsibili-
ty Principle. A service should only do one thing and do it well; have one reason to
change.

If a service only has one single reason to exist, providing a single composable
piece of functionality, then business domains and responsibilities are not tangled.
Which makes the code and system easier to understand, compose, extend and main-

tain over time.

Own Your State, Exclusively

Ok, but what about state?

What is needed is that each Microservice take sole responsibility for their own
state and the persistence thereof. Which storage medium is used does not matter;
what matters is that a service can be treated as a single unit. That it own its state,

exclusively.

Stay Mobile, But Addressable

Mobility is the possibility of moving services around at runtime, while they are being
used.

One requirement for this is that the services are addressable through virtual, sta-
ble addresses, that always work, even if a service is failing, is being relocated or up-
graded. This is called Location Transparency, and is one of the cornerstones in Reac-
tive system design.

It is paramount that the service is seen and moved around as a single unit—in-
cluding its behaviour and persistent state—to remain oblivious to how the system is

deployed, which topology it currently has—something that changes dynamically.

Microservices Come In Systems

Now we have a pretty good understanding of what characterizes a single Reactive Mi-
croservice. However, one Microservice is not of much use, they come in systems.

Like humans they act autonomously and therefore need to communicate and col-
laborate with others to solve problems—and as with humans, it is in collaboration
that both the most interesting opportunities and challenging problems arise.

Individual Microservices are fairly easy to design and implement—what is hard in
Microservices is all the things around them: discovery, coordination, security, replica-
tion, data consistency, failover, deployment, and integration with other systems, just

to name a few.



Systems Need To Exploit Reality

One of the major benefits of Microservices-based Architecture is that it gives you a
set of tools to exploit reality, to create systems that closely mimic how the world
works, including all its constraints and opportunities.

One subtle, but important fact to embrace, is that reality is not consistent—
there is no single absolute present—everything is relative, including time and our ex-
perience of now.

Information cannot travel faster than the speed of light, and most often travels
considerably slower, which means that communication of information has latency. In-
formation is always from the past, and «nows is in the eye of the beholder.

Understanding this fact can be both terrifying and liberating.

As soon as we exit the boundary of the Microservice we enter a wild ocean of
non-determinism—the world of distributed systems—where systems fail in the most
spectacular and intricate ways, where information gets lost, reordered, garbled, and
where failure detection is a guessing game. But it is also the world that gives us solu-
tions for resilience, elasticity, isolation amongst others.

But the Microservice can become an escape route from reality. Within each Mi-
croservice, we can live on a safe island of determinism and strong consistency—an is-
land where we can live happily under the illusion that time and the present is abso-

lute.
Embrace the Constraints of Distributed Systems

Minimize Coupling and Communication

Strong consistency requires coordination, which is extremely expensive in a distributed
system, and puts an upper bound on scalability, throughput, low latency and avail-
ability.

The need for coordination means that individual services can’t make progress in-
dividually, but has to wait for consensus. When designing Microservices-based systems
we should therefore strive to minimize the service-to-service coordination of state and
to allow them to comfortably share silence.

Exploiting reality means coming at peace with the fact that information is al-
ways from the past; always representing another present than ours; another view of
the world. To model this we have to rely on Eventual Consistency.

It might sound like we are giving up a lot, and we are, but we are also raising the
ceiling on what can be done in terms of loose coupling, scalability and availability—as
stated by the CAP theorem.

Guess and Apologize

Grace Hopper once said:



“It is easier to ask for forgiveness than it is to get permission.”

If you can’t coordinate, and be certain about something, then take an educated guess,
a bet that a condition will hold, and if you were wrong then apologize and perform a
compensating action.

This approach matches reality very well. It’s how we humans collaborate all the
time. Other examples include ATMs—allowing you to withdraw money in the case of
network disconnect, and then later charging your account—and how airlines are over-
booking flights—and then trying to bribe themselves out of the problem through

vouchers.
What About Transactions?

But what about transactions? Don’t we need transactions?
Transactions are fine within the individual microservice, but to quote Pat Hel-
land:

“In general, application developers simply do not implement large scalable ap-

plications assuming distributed transactions.”

A practical, scalable and resilient alternative to distributed transactions, that makes
use of some of the ideas we have discussed, is the Saga Pattern. It is a way to manage
long-running business transactions and is based on idea that long-running business
transactions often comprise multiple transactional steps in which overall consistency
of the whole transaction can be achieved by grouping these steps into an overall dis-
tributed transaction. The technique is to pair every stage’s transaction with a com-
pensating reversing transaction, so that the whole distributed transaction can be re-

versed—in reverse order—if one of the stage’s transactions fails.

Summary

To sum things up: bla bla microservices bla bla. Thank you.



